Eulerian square - vertaling naar russisch
DICLIB.COM
AI-gebaseerde taaltools
Voer een woord of zin in in een taal naar keuze 👆
Taal:     

Vertaling en analyse van woorden door kunstmatige intelligentie

Op deze pagina kunt u een gedetailleerde analyse krijgen van een woord of zin, geproduceerd met behulp van de beste kunstmatige intelligentietechnologie tot nu toe:

  • hoe het woord wordt gebruikt
  • gebruiksfrequentie
  • het wordt vaker gebruikt in mondelinge of schriftelijke toespraken
  • opties voor woordvertaling
  • Gebruiksvoorbeelden (meerdere zinnen met vertaling)
  • etymologie

Eulerian square - vertaling naar russisch

TRAIL IN A FINITE GRAPH WHICH VISITS EVERY EDGE EXACTLY ONCE
Euler path; Euler walk; Euler circuit; Euler tour; Eulerian graph; Eulerian circuit; Euler circut; Euler cycle; Euler graph; Eulerian cycle; Eulerian tour; Fleury's algorithm; Eulerian trail; Eulerian walk; Euler trail; List of impossible figures to redraw; Fleury algorithm; Eulerian graphs; Traversable graph; Kotzig transformations; Euler's circuit; Semi-Eulerian graph; Semi-Eulerian; Hierholzer's algorithm; Unicursal graph; Eulerian orientation; Euler circuits
  • This mixed graph is Eulerian. The graph is even but not symmetric which proves that evenness and symmetricness are not necessary and sufficient conditions for a mixed graph to be Eulerian.
  • A directed graph with all even degrees that is not Eulerian, serving as a counterexample to the statement that a sufficient condition for a directed graph to be Eulerian is that it has all even degrees
  • An even mixed graph that satisfies the balanced set condition and is therefore an Eulerian mixed graph.
  • An even mixed graph that violates the balanced set condition and is therefore not Eulerian.
  • An infinite graph with all vertex degrees equal to four but with no Eulerian line
  • degree]]. Therefore, this is an Eulerian graph. Following the edges in alphabetical order gives an Eulerian circuit/cycle.

Eulerian square      

математика

греколатинский квадрат

unicursal graph         

математика

уникурсальный граф

traversable graph         

математика

пересекаемый граф

Definitie

Тяньаньмынь

площадь в Пекине, административно-политический центр города. Историческое ядро площади - ворота Т. ("Ворота небесного спокойствия", 1651), входившие в комплекс южной стены "Императорского города".

Пекин. Площадь Тяньаньмынь.

Wikipedia

Eulerian path

In graph theory, an Eulerian trail (or Eulerian path) is a trail in a finite graph that visits every edge exactly once (allowing for revisiting vertices). Similarly, an Eulerian circuit or Eulerian cycle is an Eulerian trail that starts and ends on the same vertex. They were first discussed by Leonhard Euler while solving the famous Seven Bridges of Königsberg problem in 1736. The problem can be stated mathematically like this:

Given the graph in the image, is it possible to construct a path (or a cycle; i.e., a path starting and ending on the same vertex) that visits each edge exactly once?

Euler proved that a necessary condition for the existence of Eulerian circuits is that all vertices in the graph have an even degree, and stated without proof that connected graphs with all vertices of even degree have an Eulerian circuit. The first complete proof of this latter claim was published posthumously in 1873 by Carl Hierholzer. This is known as Euler's Theorem:

A connected graph has an Euler cycle if and only if every vertex has even degree.

The term Eulerian graph has two common meanings in graph theory. One meaning is a graph with an Eulerian circuit, and the other is a graph with every vertex of even degree. These definitions coincide for connected graphs.

For the existence of Eulerian trails it is necessary that zero or two vertices have an odd degree; this means the Königsberg graph is not Eulerian. If there are no vertices of odd degree, all Eulerian trails are circuits. If there are exactly two vertices of odd degree, all Eulerian trails start at one of them and end at the other. A graph that has an Eulerian trail but not an Eulerian circuit is called semi-Eulerian.

Vertaling van &#39Eulerian square&#39 naar Russisch